
Abstract. The reaction-path Hamiltonian is reformu-
lated in a form that is independent of the specific choice
of guiding path. A necessary and sufficient condition for
a given curve to satisfy reaction-path Hamiltonian
requirements is derived, showing that any curve with no
explicit dependence on the independent parameter does
give rise to a formally acceptable reaction-path Hamil-
tonian. Numerical calculations have also been per-
formed, comparing some reaction-path choices with the
exact classical dynamics, evidencing the physically
ground basis of most reaction path approaches.
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Introduction

The concept of reaction paths is a celebrated one. It has
found widespread use in descriptions of reaction mech-
anisms, which are based on geometrical rearrangements
of the atoms comprising a given chemical system [1].
More specifically, reaction path terminology is linked to
the path described on a multidimensional, configuration
space potential-energy surface, when the transformation
from reactants to products is considered. This use of
configuration space instead of phase space obviously
means neglecting the contribution of the kinetic energy
of the nuclei, so establishing the specific path described
by any real rearrangement event turns out to be some-
what ambiguous. This ambiguity is not removed even
after considering that the guiding premise should be the
likely evolution of the system toward lower potential

energy. In chemical reactions this is certainly not the
case, for at least half of the collisions between reactants
and transition states usually at higher potential energy.
Thus the initial conditions corresponding to the kinetic
energy of the nuclei critically determine the true specific,
undulating path evolving from favourably oriented
reactants towards the transition state bottleneck and
then to products. In bulk systems myriads of initial
conditions are necessary to reasonably mimic the
experimental conditions, so that even under the
assumption of partial equilibrium conditions the prob-
lem that arises is, at the very least, cumbersome. One can
resort to the Liouville theorem and then solve for the
classical density, but its use merely halves the dimen-
sionality problem [2, 3].

These premises may partially explain why description
of chemical reactions has so frequently been kept in
purely geometrical terms. An effort to incorporate the
dynamic information while, at the same time, keeping
the simplicity of envisaging the reaction as a single path
on the potential energy surface, was introduced with the
formulation of the reaction-path Hamiltonian (RPH)
[4]. This views the reaction as a vibrating super-mole-
cule, for which some distances undergo dramatic chan-
ges, those most properly describing the reaction,
whereas the remaining degrees of freedom experience
some changes in the nature of the associated vibrational
motion. This latter feature mathematically translates
into a set of couplings between the successive normal
mode expansions in which the complete reaction path is
subdivided. A key aspect is that reaction is most prop-
erly described in terms of a ‘‘distinguished’’, large
amplitude normal mode. This means that, physically, the
true reaction is a concerted, strongly correlated motion
involving, in principle, all atoms of the system. Thus, the
mathematical one-dimensional reaction path is actually
a non-local motion whose (sometimes) imaginary fre-
quency suffers strong variation when going from reac-
tants to products [5]. When the reaction path bifurcates,
the saddle point is of higher order or the passage from
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Javier González1,3, Xavier Giménez1,3, Josep Maria Bofill2,3

1Departament de Quı́mica Fı́sica, Universitat de Barcelona, Martı́ i Franquès 1, 08028, Barcelona, Catalunya, Spain
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reactants to products is described by a strongly skewed
surface; several higher-dimensional variants of the
reaction path, namely the reaction surface or the reac-
tion-volume Hamiltonian, have been proposed and tes-
ted [6, 7, 8, 9].

A further reformulation, concerning the arc length
associated to the reaction path co-ordinate, plus a linear
Taylor expansion of the gradient equation defining the
guiding path led, more recently, to an efficient formu-
lation of the reaction-path Hamiltonian [10]. In partic-
ular, the number of grid points necessary for a
converged description of the reaction-path Hamiltonian
dynamics turns out to be substantially reduced. This
feature is attributable to the fact that the first order in
the gradient expansion, instead of zero order, is fully
incorporated into the complete set of dynamic equa-
tions. Interestingly, the linear expansion of the gradient
ultimately leads (i.e. after some algebra) to a Bernoulli-
type differential equation, inside the validity range for
each quadratic expansion of the potential energy surface
along the reaction path.

In spite of the previous considerations, an essential
basic ambiguity still prevails in any reaction path
description, either structural or dynamic, of a chemical
reaction. This ambiguity is, namely, the selection of the
specific reference path into which one constrains the
molecular system to evolve, a selection which is easily
recognized to certainly incorporate an ad hoc compo-
nent. If one does not go further in the level of theory, so
that one keeps the economy of the reaction path idea, no
formal arguments give priority to a given path over
another. One can thus focus on paths accomplishing
some particular topological properties, or on those
arising from defining differential equations that exhibit
improved properties when dealing with some regions of
the potential energy surface. This issue has been recently
considered by the authors. In particular, a Newton path
(NP) proved superior, when dealing with bifurcation
points, than the more traditional Intrinsic reaction
coordinate path (IRC) [11]. The reaction dynamics
emerging from both paths evidenced some differences,
even though they were ultimately not substantial when
all degrees of freedom where globally compared.

This latter feature, along with the strong formal par-
allelism between the IRC and the Newton RPH formu-
lations, prompted a further study, namely definition of a
reaction-path Hamiltonian in terms of a reference path,
which is defined in much more general terms than pre-
vious formulations. It has been found that this is not only
possible, but that a formal, elegant way of deriving the
dynamic equations of motion emerges; it is, in addition,
much more straightforward. The purpose of this article is
thus to show this formulation of the generalized reaction-
path Hamiltonian dynamics. In addition, some numeri-
cal tests have been performed, aimed at showing that any
of the specific formulations of the reaction-path Hamil-
tonian dynamics yields both position and momentum
time dependencies that are in global, physical good
agreement with exact classical dynamics. It thus provides

a necessary test prior to extending these reaction-path
Hamiltonian formulations to their application to large
polyatomic systems.

The article is organized as follows: first we discuss the
problem and derive the generalized reaction-path
Hamiltonian. Numerical results, corresponding to a
model reference system, showing the physical basis of
the reaction path idea, are shown next. Finally, some
conclusions are given.

Theoretical approach: the parametric form of the
Euler–Lagrange equations as a basis for the general
formulism of the reaction-path Hamiltonian

The basic idea of the reaction-pathHamiltonian, RPH, as
stated, is to constrain the motion of a molecule along a
determined path or curve in configuration space. These
dynamics take into account both the motion through the
reaction path and the harmonic deviations along it. A
well-known, pioneering version of the RPH was derived
byMiller, Handy and Adams (MHA) some years ago [4].
Essentially, their Hamiltonian is a generalization of the
natural collision coordinate Hamiltonian for collinear
systems [12], to molecules with many degrees of freedom.
In fact it was obtained by adapting ‘‘the large amplitude
motion’’ Hamiltonian of a ‘‘floppy’’ degree of freedom,
for which an anharmonic treatment is considered. This
large amplitude motion coordinate is the reaction coor-
dinate. The main drawback of this RPH derivation is that
the resulting equations of motion cannot be integrated
easily, owing to the explicit appearance of the couplings
between the reaction coordinate and the other harmonic
coordinates in the system Hamiltonian. The restricted
nature (i.e. harmonic-like) of the molecular motion per-
pendicular to the reference curve or reaction coordinate is
the origin of these couplings, since the nature of the per-
pendicular harmonic motion substantially changes as one
advances along the reaction coordinate.

An alternate way to address the formulation of the
RPH was considered by González, Giménez, and Bofill
(hereafter termed as GGB-RPH) [10]. The basic idea
consists in parameterization of the curve, or reaction
path, the parameter being the reaction coordinate or arc
length. All the coordinates that characterize the reaction
path are then a function of the reaction coordinate.
Consequently, any motion along the path implies a
change in this reaction coordinate. When the parame-
terization of the curve consists in assuming that the RP
follows the intrinsic reaction coordinate, IRC, the
defining equation is [13, 14, 15]:

dDq0
ds

=
g Dq0 sð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g Dq0 sð Þð Þ½ �Tg Dq0 sð Þð Þ
q ð1Þ

where Dq0=q – q0 and g are the corresponding mass-
weighted internal coordinates and gradient vectors,
respectively. For a strict definition of q and q0, see
Ref. [10]. The first order differential equation Eq. (1)
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defines the tangent of the IRC in internal coordinates,
whereas the parameter s plays the role of an arc length.
The above IRC is a parametrically defined curve in the
M-dimensional mass-weighted internal coordinate
space, where M=3N)6, and N is the number of atoms
of the supermolecule.

The mathematical equations for the path lead to a
stepwise integration, analytic inside each quadratic region
into which the reaction coordinate can be divided. An
important feature of the GGB-RPH formulation is that
the range of validity of the quadratic expansion gets very
much enlarged in this new version, owing to the linear
expansion of the gradient differential equation defining
the reference path, instead of the zeroth order used by
MHA in their original derivation. Therefore, substituting
the equations of the path, as a function of the reaction
coordinate, into a classical Hamiltonian yields a new form
of RPH. The associated equations of motion of this RPH
are easily solvable because the couplings between the
harmonic coordinates, belonging to different quadratic
expansions, appear implicitly. Consequently, this new
RPH depends only on a position coordinate and its con-
jugate momentum, rather than on the whole set of M
coordinates and their conjugate momenta. The above
transformations, along with some further re-parameter-
izations, introduced to simplify the final equations of
motion, lead to a Bernouilli-type dynamic equation [10]:

dv
dt

+av2+1=0 ð2Þ

where the final unknown function is derived after
the following consecutive transformations: u(s)=
exp

�

a
R s

s0
1
ffiffiffiffiffiffi

gTg
p ds0g, u ¼ exp sð Þ, v ¼ ds=dt, with the pro-

portionality constant a having units of energy·length)2.

In Eq. (2), a=(g0)
T
H0g0/(g0)

T
g0–1, where g0 and H0 are,

respectively, the gradient vector and the Hessian matrix
in mass-weighted internal coordinates at the reference
point for the quadratic expansion. Once solved (i.e. once
u(t) and the conjugate momentum, pu(t), are available
for all relevant t), one may easily recover the dynamics
associated to the original normal mode coordinates
through the relation:

q uð Þ = q0 � I� uH0
� �

H�10 g0 ð3Þ

As stated in the Introduction, the above RPH
derivation has some flexibility concerning the precise
definition of the reference path. In particular, it has been
shown that proceeding closely in parallel to the algebra
leading to the IRC-RPH, it is possible to easily derive a
Newton-RPH [11]. This variant shows the advantage of
naturally dealing with valley-ridged inflection (VRI)
points (i.e. it removes the ambiguity in deciding the
direction of further advance when the path crosses a
VRI). This advantage arises thanks to the inclusion of
the Hessian in the defining differential equation for the
Newton following algorithm [16]:

dq sð Þ
ds
¼ �A q sð Þ½ �g q sð Þ½ � ð4Þ

where A is the adjoint matrix of the Hessian matrix H.
Thus, one has algorithmically available all the frequen-
cies across a VRI point, which is precisely the kind of
information missing in IRC-following algorithms. It is
then trivial, by inspection of the two imaginary fre-
quencies, to select the larger absolute value and proceed
ahead along the reaction coordinate. The final equations
of motion, obtained again after suitable re-parameter-
izations, look very similar to those characterizing the
IRC-RPH equations of motion:

dv
dt
þ av2 þ b ¼ 0 ð5Þ

where a ¼ det H0ð Þ, b ¼ k=am, with k ¼ gT
0H
�1
0 g0 and

m ¼ gT
0H
�2
0 g0. The consecutive transformations in the

independent parameter that lead to Eq. (5) are

now ds=ds ¼ g0 þH0Dq0ð ÞTA2 g0 þH0Dq0ð Þ
n o

, u sð Þ ¼
exp det H0ð Þsf g, and v ¼ ds=dt. Finally, the relations
linking the reaction path dynamic variable u to the ori-
ginal normal mode coordinates is now:

q uð Þ ¼ q0 � 1� uð ÞH�10 g0 ð6Þ

Thus, Eqs (2) and (3) for the IRC look remarkably
similar to Eqs (5) and (6) for the Newton Path, even
though the algebraic transformations within each deri-
vation are substantially different in detail. In particular,
one should notice that, for the IRC, u is defined in terms
of s, whereas for the NP is s the parameter defined in
terms of s. Then, in both cases a relation between s and
u leads to dynamic equations in Hamiltonian form, for
the reduced u, pu pair of phase space variables.

This possibility, namely the capability of the GGB-
RPH to handle several definitions of the reference path,
strongly suggests that a more general RPH formulation,
in terms of generalized properties of the reaction path,
might be possible. It is clear, from the above consider-
ations, that both the starting equation, defining the
parametric curve on the PES, and the re-parameteriza-
tion sequence necessary to yield the final equations of
motion in Hamiltonian form are going to play a key role
in this general discussion. Actually, one may state our
main goal in the following form: Which are the mini-
mum requirements, for a given path and any possible re-
parameterization of it, to obtain a final, reduced set of
dynamic equations in Hamiltonian form?

Next we present this generalized class of RPH, its
derivation being based on the parametric form of the
calculus of variations [17]. The main conclusion, quite
remarkable, to be extracted is that the general expression
enables the derivation of an RPH for any type of path,
assuming the associated Lagrangian functional is not
explicitly dependent on the curve parameter.

The derivation begins by considering that the classi-
cal motion of a molecular system of N atoms, during the
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time interval [t0, t], is assumed to be described by a curve
function q(t) for which the action integral [18]:

J q½ �=
Z t

t0

L q;
dq

dt

� �

dt =
Z t

t0

1

2

dq

dt

� �T
dq

dt

� �

� V qð Þ
" #

dt

ð7Þ

is a minimum. In Eq. (7), q is the mass–weighted vector
internal coordinate andV(q) the potential function. A key
aspect of our derivation is that we are seeking the general
criteria for any curve parameterization to be acceptable as
a RP, i.e. that it is capable of yielding a proper RPH. To
that purpose, a prospectively good strategy might seem to
formulate the least action principle in terms of an explicit
dependence on the curve parameterization (but not an
explicit dependence on the parameter itself). This means
that one must change the independent variable, keeping
the path definition (in the dq/ds form) explicit in the
Lagrangian. Eq. (7) can thus be written as:

J q½ � ¼
Z t

t0

L q,
dq

dt

� �

dt

¼
Z s

s0

1

2

dq

ds

� �T
dq

ds

� �

dt
ds

� ��1
� dt

ds

� �

V qð Þ
" #

ds

¼
Z s

s0

F q,
dq

ds
;
dt
ds

� �

ds

ð8Þ

where the functional F appearing on the right-hand side
of Eq. (8) depends on two unknown functions, q(s) and
t(s), where s is the parameter that characterizes the
curve. It is easily shown that, in order to obtain
acceptable solutions, the functional F must not in-
volve s explicitly. Moreover, the functional F is posi-
tive-homogeneous of degree one with respect to the
arguments dq/ds and dt/ds. As a consequence of these
features, the value of this functional F does not depend
on the choice of the parameter, but rather on the nature
of the parametric curve line defined in the qt-plane.
These statements rest on the basis of Noether’s theo-
rem, thus providing a rigorous mathematical link be-
tween the present derivation and the Lagrangian
mechanics over differentiable varieties [18]. The above
requirement may be expressed, in more specific terms,
by stating that an explicit dependence on the curve
parameter should lead to a non-conserved first integral
of the equations of motion, e.g. to non-conservation of
energy when the independent parameter plays the role
of time, etc...

The variational problem for the right-hand side of
Eq. (8) leads to a set of Euler equations:

@F
@t
� d

ds
@F
@_t

� �� �

= 0, rqF� d

ds
r _qF
� �

� �

= 0 ð9Þ

where it is important to note, for the sake of generality,
that the overdot indicates differentiation with respect

to s. The set of equations Eq. (9) must be equivalent to
the single Euler equation corresponding to the varia-
tional problem for the original functional given in
Eq. (8), namely:

rqL�
d

dt
r _qL
� �

� �

= 0 ð10Þ

where now the overdot obviously means differentiation
with respect to time. Consequently, the set of equations
Eq. (9) cannot be independent, and it is possible to show
that they are connected by the identity [17]:

dt
ds

@F
@t
� d

ds
@F
@_t

� �� �

+
dq

ds

� �T

rqF -
d

ds
r _qF
� �

� �

= 0

ð11Þ

assuming dt/ds „ 0 and dq/ds „ 0. Using Eq. (8), the
first term on the left hand side of Eq. (11) leads to:

d

ds
1

2

dq=dsð ÞT dq=dsð Þ
dt=dsð Þ2

+ V qð Þ
" #

= 0 ð12Þ

Eq. (12) tells us that the total energy is constant
through the parametric curve q=q(s), t=t(s). This total
energy may then be written in a more convenient form:

E =
1

2

dq

ds

� �T
dq

ds

� �

ds
dt

� �2

+ V qð Þ ð13Þ

The second term on the left hand side of Eq. (11) is
related to the parametric nature of the curve line.
However in the present study, since this curve is imposed
rather than an extremal of the action integral Eq. (8),
either the second expression of Eq. (9) or the second
term on the left hand side part of Eq. (11), is not satis-
fied in general. The general RPH is derived defining the
conjugate momentum to the reaction coordinate, now
represented by the s parameter:

ps =
dq

ds

� �T
dq

ds

� �

ds
dt

� �

ð14Þ

and taking into account Eq. (13) and the curve q=q(s):

H s, psð Þ = 1

2

p2
s

dq
ds

	 
T dq
ds

	 


+ V q sð Þ½ � ð15Þ

It is worth noting that the factor
dq
ds

	 
T dq
ds

	 


plays in

this formulation the role of a mass, although it is a
variable term as one advances along the reaction coor-
dinate. One may then envision the resulting one-
dimensional effective motion as a time evolution of a
particle, under the potential given by V [q(s)], but with
variable inertia. This view has an interesting parallelism
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with the RPH covariant formulation of Okuno [26], as
one may identify his gss metric tensor component with

the inverse of
dq
ds

	 
T dq
ds

	 


.

Finally, applying Hamilton’s equation of motion to
Eq. (15), we obtain the time-evolution differential
equations for both s and ps:

ds
dt
¼ ps

dq
ds

	 
T dq
ds

	 


dps

dt
¼ � @Hðs; psÞ

@s
¼ p2s

dq
ds

	 
T d2q
ds2

� �

dq
ds

	 
T dq
ds

	 


� �2

� dq

ds

� �T

rqV ½qðsÞ� ð16Þ

Eq. (16) indicates that, interestingly, one may obtain
the effective equations of motion, for any guiding path,
from the simple knowledge of the defining equation for
the path, dq/ds. As is usual in analytical mechanics, one
may derive a differential equation in terms of solely s(t),
from typical rearrangements of Eq. (16):

dq

ds

� �T
dq

ds

� �

" #

d2s
dt2

� �

þ dq

ds

� �T
d2q

ds2

� �

" #

2
ds
dt

� �

� ds
dt

� �2
" #

� dq

ds

� �T

rqV q sð Þ½ � = 0 ð17Þ

According to Eq. (17), the restricted motion of a
molecular system through a curve depends on the tan-
gent and the curvature of the path, as well as on the
gradient vector at a point of this path. If the tangent
vector is normalized, Eq. (17) is simplified to:

d2s
dt2

=
dq

ds

� �T

rqV q sð Þ½ � ð18Þ

Application to the IRC, NP, and RGF paths

So far, the algebraic developments performed in this
work have been completely general. However, the main
conclusions, and actual advantages, arising from the
present formulation, might only be assessed through
specific applications. Here we shall explain first how the
dynamic equations for the previously worked IRC and
NP cases may be derived, showing that they come up
with much less effort than from previous formulations.
Afterwards, the methodology will be applied to a new
example, the guiding path determined by the reduced
gradient following (RGF) algorithm, for which the

effective one-dimensional dynamic equations will be
obtained for the first time.

The derivation of the IRC RPH goes as follows. One
first considers that the potential is expanded until second
order with respect to Dq0. Then Eq. (9) is taken and s
and ps are replaced by u and pu. Finally, one simply
substitutes in Eq. (3), yielding the defining equation for
the IRC RPH (Eq. (17) in Ref. [10]).

Equivalently, one may obtain the NP RPH if one
takes Eq. (6) and substitutes it in Eq. (9), always under
the assumption of a quadratic expansion of the potential
energy. Equation (24) of Ref. [11] is readily obtained.

The generality of the present derivation may be
further illustrated with the derivation of the reduced
gradient following RPH. This type of path was intro-
duced by Quapp [19] and further analysed by Bofill
et al. [20]. In this path, the gradient vector at each point
of the path has a constant direction. Mathematically
this path is formulated as an implicit function:

r� g q sð Þ½ �
g q sð Þ½ �j j ¼ 0 ð19Þ

where r is an arbitrary unit vector corresponding to a
previously selected direction, whereas s plays now the
role of the curve parameter. The RGF is actually a
rigorous formulation of the old ‘‘distinguished coordi-
nate method’’, i.e. a mathematically grounded form of
the usual procedure taken in most quantum chemistry
reaction-co-ordinate calculations. The tangent vector for
the RGF curve is:

I� rrT
� �

H q sð Þ½ � dq sð Þ
ds
¼ PT

r H q sð Þ½ � dq sð Þ
ds
¼ 0M�1 ð20Þ

where the Pr matrix is a rectangular matrix such that the
columns of it form an orthonormalized basis set,
orthogonal to the r vector, I is the identity matrix and
0M)1 is the zeroed vector with dimension M)1. Now it is
assumed that any point on the path can be represented
as a Taylor series in s, truncated to first order:

q sð Þ ¼ q s0ð Þ þ r Prjð ÞbDs0 þ O Ds0ð Þ ð21Þ

where (r|Pr) denotes the matrix formed by the r vector
and the Pr matrix, the b vector is defined as:

bT ¼ 1; �A�1f
� �

1
; . . . ; �A�1f

� �

M�1
� �

b1 ð22Þ

with A ¼ PT
r HPr, f ¼ PT

r Hr, whereas the b1 constant is
determined by normalization. At this point, the RGF
RPH equations may then be readily obtained, just by
using Eq. (15) and proceeding as in the previous IRC
and NP cases:

H s; psð Þ ¼ 1

2
p2

s þ V0 þ
ffiffiffiffiffiffiffiffiffiffi

gT
0 g0

q

b1Ds0

þ 1

2
Ds20b

T r Prjð ÞTH r Prjð Þb ð23Þ
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The Hamiltonian (Eq. 23) ends the formal section of the
paper. Just note in passing that generating the RPH
from the RGF following algorithm yields a nice con-
nection with the reaction surface Hamiltonian (RSH) of
Carrington and Miller [6]. To see this, one has to take
two non-zero components of the r vector, since then one
readily shows that the surface spanned by this two
components is completely equivalent to the surface
generated by the two large amplitude motions in the
RSH treatment of Carrington and Miller.

Some numerical results

The reaction path approach has been tested to some
extent in the past, both concerning ‘‘structural’’
descriptions of reactive processes (see, for example
Ref. [21]) and the associated dynamics under several
variants of the reaction-path Hamiltonian [22, 23, 24,
25, 26, 27]. Among the studies so far performed, out-
standing numerical results were obtained by Yamashita
and Miller in their test of the autocorrelation function
approach for the rate constant, for the 3D H + H2

system [28]. In particular, they obtained a correction
factor for transition state theory in quite good agree-
ment with exact close coupling calculations. Other
notable numerical results were obtained by Billing in a
series of papers [29, 30, 31, 32, 33], where an alternative
formulation, based on the use of the second quantization
approach for the perpendicular harmonic modes, was
derived and tested. Furthermore, particularly convincing
has been his recent reaction path rate constant calcula-
tion for the CH4+H reaction [34], for which a 12D ex-
act quantum scattering calculation, augmented to 15D
by means of the J-shifting approach [35] and further
corrected by a more accurate evaluation of partition
functions [36], served as an excellent benchmark. RP
results lie very close to exact ones at low temperatures,
the agreement being slightly worse (although always
within an order of magnitude) at higher temperatures. A
review on several aspects of the reaction path approach
has recently been published by Kraka [1].

Most of the above numerical studies focus on two
quite distinct aspects. On one hand, most mechanisms of
chemical reactions are studied up to the reaction path
topological features, plus the dependence on the reaction
path of the frequencies associated with the perpendicular
vibrational modes. On the other, as stated, several (but
not too many) works focus on rate constant calcula-
tions. In other words, the available tests are based on
either structural–like parameters or on rather averaged
dynamic quantities. Given the nature of the present
work, where general criteria for selecting specific reac-
tion paths have been provided, it seems that more de-
tailed tests, concerning the dynamics, should become
available. In our opinion, an adequate test in this regard,
i.e. on the accuracy of the reaction path approach, may
be performed by testing how individual reaction path
trajectories compare with those obtained from exact

classical mechanics. This is, in principle, a rather strin-
gent test, because the reaction path idea actually exploits
the fact that trajectories should follow, on average, an
imaginary path which is expected to be close to one of
the specific choices for the reaction path [27]. Thus,
individual collisions might clearly depart from exact
solutions and this might not be an indicator of an
important weakness of the method. But, in any case, it is
clear from the outset that knowing the accuracy of the
reaction path approach, from a comparison to exact
dynamics, should enable more precise knowledge of the
capabilities of the method.

Here we have used the well-known Müller-Brown 2D
potential energy surface (PES) for such test. It is a PES
that has been used throughout in many instances, being
considered a rather good model potential for isomeri-
zation processes. Contour plots of this PES may be
found elsewhere [11, 27]. Exact trajectories were inte-
grated by a standard numerical integrator, whereas the
RP trajectories were obtained by choosing the IRC path
as the reaction path, so that the original (Cartesian)
positions, as a function of time, were derived from
Eq. (3), whereas the Cartesian momenta were obtained
from the expression:

p u; puð Þ ¼ uH0�1g0
gT
0 u2 H0�1ð Þg0

pu ð24Þ

Figures 1 and 2 show the phase space parametric
plots for the IRC–RPH and exact cases, for the (x,px)
and (y,py) cases, respectively. Trajectories have been
chosen to correspond to IRC–type initial conditions:
motion with very low kinetic energy, with initial condi-
tions given by the same initial point and momenta
directions as those used in an IRC-following of the PES,
i.e. the direction of the gradient vector corresponding to
the imaginary frequency.

Figures 1 and 2 evidence, as expected, agreement
between the IRC-RPH and the exact classical dynamics
that, while being good on average, shows discrepancies
in some portions (i.e. time intervals) of the trajectory. In
particular, the (x,px) projection of the trajectory, Fig. 1,
shows that, initially, the exact case runs with decreasing
x value, but having essentially opposite momentum to
the IRC–RPH case. It is then clear that, in this region of
the PES, moving with a given velocity leads to a clear
departure from the zero kinetic energy path. However,
the averaged nature of the IRC translates into conver-
gence in this trajectory for larger times. Well before the
first vibrational period is finished (the vibrational half-
periods may be identified from the local maxima and
minima in the phase space plot), both the exact and
IRC–RPH cases show good agreement, although it be-
comes slightly worse for the last stages of the trajectory
shown in Fig. 1.

Figure 2 shows the (y,py) projection of the same
trajectory as in Fig. 1. The overall agreement is
qualitatively better than the (x,px) case, but it is
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quantitatively worse than that in Fig. 1. In addition, a
turning point at long times is shown by the exact
trajectory, which is not reproduced by the IRC–RPH
case. This is the only qualitative feature, correspond-
ing to exact trajectories, not reproduced by the RPH
method, in the scanning of initial conditions per-
formed for the present work.

Figures 1 and 2 correspond, actually, to very detailed
analyses. Thus the emergence of discrepancies between
the exact and the IRC–RPH time dependencies is not

surprising if one considers the respective levels of theory
in which both formulations are based. Remarkably,
however, things get more reasonable when one combines
the x and y projections and plots the actual trajectory in
configuration space. This is shown in Fig. 3. It is clearly
evident that, in this case, the qualitative behaviour of
both trajectories is essentially similar, i.e. both cases
display a very similar vibration, encountering the first
turning point at essentially the same times, in a given
region of configuration space. The further progression in

Fig. 2. The same as Fig. 1 for
the (y,py) phase space section

Fig. 1. A trajectory in the
(x,px) phase space section
computed using Müller–Brown
2D PES. This trajectory was
started at the transition state,
which is located at
x=)0.822 Å, y=0.624 Å,
with a initial energy of
7 lhartree above the transition
state energy (so it amounts to
1.75% of the barrier energy).
The solid line corresponds to
the trajectory obtained from
the IRC–RPH, after using the
transformation given in Eqs
(3) and (24). The dashed line
corresponds to the standard
integration of the 2D, complete
Hamilton equations of motion
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time is also quite similar, ending at locations which
appear quite close on the PES.

Actually, all cases so far studied (a larger group of
trajectories having small initial momenta, not shown
here) give rise to a semi-quantitative match between the
IRC-RPH and the exact dynamics. This feature may be
assessed from inspection of Fig. 4, where the phase
space plots for both the (x,px) and (y,py) projections, for
a trajectory having opposite momentum to that shown
in Figs. 1 and 2, are shown in the same panel. Good

agreement is obtained between the exact and RPH cases,
for the x projection, although they are much worse for
the y case. Nevertheless, the qualitative features of the
exact trajectories are essentially reproduced in Fig. 4.

Overall, results appear quite interesting, putting an
additional amount of confidence, besides previous work
on rate constant calculations, on the possibility of using
the RPH for rather accurate, physically meaningful
descriptions of complex chemical processes. It has the
enormous advantage of avoiding the knowledge of large

Fig. 3. The same trajectory as
in Fig. 1 and 2, plotted in
configuration space. The
horizontal axis corresponds to
the x coordinate, whereas the
vertical axis corresponds to the
y coordinate

Fig. 4. Composition of the
phase space (x,px) and (y,py)
projections of a trajectory
started at the same PES
location as that shown in
Fig. 1, 2, and 3 (i.e. the
transition state in the Müller–
Brown 2D potential) but
having the opposite
momentum
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portions of the PES and, most notably, of avoiding the
terribly tedious stage of fitting the available information
on the PES to a suitably behaved interpolating analyti-
cal function.

Summary and conclusions

A rigorous mathematical criterion for deriving the
reaction-path Hamiltonian from a general reference
path has been provided in the present work. Resting
on Noether’s theorem on the integrability of the
Lagrange equations over differentiable varieties, it is
shown that the only criterion is that the reference
path, defined in terms of its dependence on a freely
chosen parameter, must not explicitly depend on this
parameter.

The above result opens the possibility of deriving, in a
straightforward manner, dynamic equations related to
the reaction-path parameter and its conjugated linear
momentum, knowing by construction that the Bernou-
illi–type differential equation is readily transformable to
the corresponding dynamic equations in Hamiltonian
form. One thus ensures conservation of total energy,
irrespective of the kind of dimensionality reduction
being performed, as one passes from the full 3N–
dimensional description to the 1D reaction path prob-
lem. Interestingly, as has been stated elsewhere [10], this
1D path leads to equivalence with the brachistochrone
problem, thus yielding the Bernouilli-type differential
equation.

The feasibility in obtaining the dynamic equations,
from any suitable starting path, is shown by explicitly
discussing how the IRC and the NP RPH are derived
under the new theoretical framework, these two cases
having been studied in previous work by the authors.
This framework has been further tested in the straight-
forward derivation of the dynamic equations associated
with an RGF path, for the first time. It is hoped that this
flexibility will find instrumental use in the study of the
reaction dynamics of very complex systems, for which
involved reaction paths are expected to appear in their
accurate description.

Finally, a numerical, stringent test of the RPH
methodology has been performed, by comparing indi-
vidual trajectories obtained from the RPH dynamic
equations and those from exact classical mechanics.
Interestingly, rather good overall qualitative agreement
has been obtained between the RP and exact phase
space trajectory plots, for all initial conditions explored
by the authors. This result provides additional experi-
ence on the capabilities of the RP idea, accumulating
more confidence on the possibility of performing
accurate dynamics studies of complex molecular
systems.

Acknowledgements The authors wish to thank Professors S.
Olivella and A. Aguilar for fruitful discussions. J.G. gratefully
thanks the CeRQT for providing a predoctoral fellowship. Finan-
cial support is acknowledged from the Spanish ‘‘Dirección General
de Investigación (DGI)’’ and the ‘‘Fondo Europeo de Desarrollo
Regional’’, through the grant BQU2002–00293 and from ‘‘Gener-
alitat de Catalunya’’ grant 2001SCG00048.

References

1. Kraka E (1998) In: Schleyer PvR (ed) Encyclopedia of com-
putational chemistry. Wiley, New York, p 2437

2. Billing GD, Mikkelsen KV (1997) Advanced molecular
dynamics and chemical kinetics. Wiley, New York

3. Schatz GC, Ratner MA (1993) Quantum mechanics in chem-
istry. Prentice Hall, New York

4. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99
5. Miller WH (1983) J Phys Chem 87:3811
6. Carrington T Jr, Miller WH (1984) J Chem Phys 81:3942
7. Billing GD (1996) Mol Phys 89:355
8. Koch A, Billing GD (1997) J Chem Phys 107:7242
9. Colletti C, Billing GD (1999) Phys Chem Chem Phys 1:4141
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